Post-menopausal women present with the highest incidence and morbidity of knee osteoarthritis (KOA), but no disease-modifying therapies are available. This treatment gap may be driven by the absence of menopause in preclinical studies, as rodents do not naturally maintain a menopausal phenotype. Here, we employed a chemically-induced menopause model to map the trajectory of KOA at the tissue and proteome levels and test therapeuticsin silico. Middle-aged female mice were randomized to sesame oil (non-menopause) or 4-vinycyclohexene diepoxide (menopause) injections. Following comprehensive validation of our model, knees were collected across perimenopause and menopause for histology, and cartilage samples were micro-dissected for mass spectrometry proteomics. Menopause mice displayed aggravated cartilage degeneration and synovitis relative to non-menopause mice. An unbiased pathway analysis revealed progesterone as a predominant driver of pathological signaling cascades within the cartilage proteome. Network medicine-based analyses suggested that menopause induction amplifies chondrocyte senescence, actin cytoskeleton-based stress, and extracellular matrix disassembly. We then usedin silicodrug testing to evaluate how restoration of sex hormones impacted the cartilage network. The greatest restoration was observed with combined estradiol/progesterone treatment (i.e., hormone therapy), althoughin silicotreatment with a senolytic drug also partially recovered the cartilage proteome. Taken together, our findings using a translatable female aging model demonstrate that menopausal aging induces progressive cartilage degeneration and amplifies age-related synovitis. These changes may be driven by a previously unappreciated role of progesterone loss and menopause-induced cellular senescence. Lastly,in silicotreatment suggests an estradiol/progesterone cocktail or senolytics may attenuate menopause-induced cartilage pathology.One Sentence SummaryMenopause induces cartilage degradation, senescence, and extracellular matrix disassembly, while hormone therapy restores the cartilage proteome.