Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August-September 2012. Sediment traps were deployed at 2-5 m and 20-25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.
A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August-September 2012. Sediment traps were deployed at 2-5 m and 20-25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.
The central Arctic Ocean is rapidly changing due to amplified warming and sea ice retreat. Nonetheless, it remains challenging to document and decipher impacts on key ecosystem processes such as primary production and pelagic-benthic coupling, due to limited observations in this remote area. Here we investigated environmental changes at the Laptev Sea continental slope (60-3400 m water depth) from the surface to the seafloor, by replicating sample transects two decades apart. Mean break-up of sea ice occurred earlier and mean freeze-up occurred later in 2012 compared to 1993, extending the ice-free period by more than 30 days. On average, observations and model results showed an annual increase in primary production of 30% and more in the study area in 2012. In contrast, calculated and modelled fluxes of particulate organic carbon (POC) to the seafloor were only slightly higher in 2012 and did not extend as far into the deep Laptev Sea as the increase in primary production, possibly due to a more developed retention system. Nevertheless, benthic surveys revealed a substantial increase in phytodetritus availability at the seafloor along the entire transect from the shelf edge to the deep sea. This calls for carbon input by lateral advection from the shelves, additional input from sea ice, and/or a late summer bloom. We also investigated the composition and activity of bacterial communities at the seafloor and potential linkages to the observed environmental changes. While bacterial abundance, biomass and overall community structure showed no systematic differences between the two contrasting years at all depths, extracellular enzymatic activities had increased as a result of higher food availability. This was partly reflected in higher benthic oxygen uptake, indicating a moderate impact on benthic remineralization rates at the time of sampling. Our results show considerable effects of ocean warming and sea ice loss on the ecosystem from the surface ocean to the seafloor in the Laptev Sea, which are likely to continue in the coming decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.