2014
DOI: 10.1039/c2rp20135f
|View full text |Cite
|
Sign up to set email alerts
|

Undergraduate students' conceptions of enthalpy, enthalpy change and related concepts

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
17
0
10

Year Published

2014
2014
2020
2020

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 32 publications
(28 citation statements)
references
References 49 publications
0
17
0
10
Order By: Relevance
“…When reasoning about ionization energy, students may struggle to apply basic principles of electrostatics and may explain ionization energy trends using, for example, the octet rule or ideas about stability rather than a foundational understanding of the relationship between energy and atomic–molecular structure (Taber, ). Similarly, in thermodynamics contexts, Nilsson and Niedderer () observed that students may attribute work to atomic–molecular phenomena such as the conversion of potential to kinetic energy rather than macroscopic changes in pressure and volume, suggesting a disconnect between macroscopic ideas such as heat and work to their understandings of molecular‐level processes. Lacking a coherent framework for reasoning about energy in chemical systems, even advanced students who are otherwise successful in using mathematical resources may struggle to understand what those representations mean in terms of fundamental energy concepts and the atomic–molecular scale (Hadfield & Wieman, ).…”
Section: A Re‐evaluation Of the Role Of Energy At The Atomic–moleculamentioning
confidence: 99%
“…When reasoning about ionization energy, students may struggle to apply basic principles of electrostatics and may explain ionization energy trends using, for example, the octet rule or ideas about stability rather than a foundational understanding of the relationship between energy and atomic–molecular structure (Taber, ). Similarly, in thermodynamics contexts, Nilsson and Niedderer () observed that students may attribute work to atomic–molecular phenomena such as the conversion of potential to kinetic energy rather than macroscopic changes in pressure and volume, suggesting a disconnect between macroscopic ideas such as heat and work to their understandings of molecular‐level processes. Lacking a coherent framework for reasoning about energy in chemical systems, even advanced students who are otherwise successful in using mathematical resources may struggle to understand what those representations mean in terms of fundamental energy concepts and the atomic–molecular scale (Hadfield & Wieman, ).…”
Section: A Re‐evaluation Of the Role Of Energy At The Atomic–moleculamentioning
confidence: 99%
“…Solamente 6 de los 35 estudiantes explicitan en el ítem 1 que el proceso es adiabático. En las ¾ partes (N = 28) de las explicaciones no se indica que el gas realiza trabajo contra el exterior (Nilsson y Niedderer, 2014). En muy pocas explicaciones (N = 5) de los estudiantes se ha utilizado el término energía interna -a veces con significado de 'contenido de calor'-y en ninguna de las 35 se cita el primer principio de la termodinámica.…”
Section: Resultados Obtenidos En El Cuestionario Q 1 Para Explicar Dounclassified
“…En resumen, en este ítem 3 se ha constatado que prácticamente la mitad de los estudiantes dan respuestas macroscópicas incorrectas al no saber que la entalpía de formación de una sustancia depende también del estado físico y que la condensación del gas es un proceso exotérmico. Una cuarta parte de la muestra ha utilizado razonamientos submicroscópicos incorrectos al relacionar la fuerza de los enlaces en las moléculas con la entalpía de formación sin ninguna justificación (Nilsson y Niedderer, 2014).…”
Section: Resultados Obtenidos En El Cuestionario Q 2 Para Explicar Elunclassified
See 1 more Smart Citation
“…Kako bi se jednoznačno opisala kemijska pretvorba, ΔH se dijeli s dosegom kemijske reakcije, a dobivena intenzivna veličina naziva se reakcijska entalpija: (10) Doseg reakcije 9,10,12,13 jednak je množini reakcijskih pretvorbi (n r ), odnosno broju (N r ) reakcijskih pretvorbi opisanih određenom jednadžbom kemijske reakcije podijeljenim s Avogadrovom konstantom (L) (11) Doseg se računa iz množine reaktanta (ili nastalog produkta) i stehiometrijskog koeficijenta (12) Za promatranu reakciju raspada vodikova peroksida (jednadžba 7) doseg reakcije može se izračunati ili iz promjene množine vodikova peroksida ili iz promjene množine nastalog kisika: (13) Doseg stoga ovisi o zapisu elementarne pretvorbe (načinu izjednačavanja jednadžbe, odnosno stehiometrijskim koeficijentima reaktanata i produkata). Reakcija raspada vodikova peroksida može se zapisati i kao:…”
Section: Reakcijska Entalpijaunclassified