Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Tight reservoirs with low and ultralow permeability must be successfully stimulated to produce at economic oil or gas rates. For this reason, costs of drilling and completing wells are very high in tight reservoirs. In order to reduce these costs, operators have often tried to replicate the same or similar hydraulic fracturing designs that have been successfully used in previous wells in the same geological area. This strategy sometimes results in unexpected surprises and operational challenges leading to unsuccessful stimulations and poor production performance. The major reason behind these challenges is that tight reservoirs exhibit a localized behavior with changes in reservoir quality such as mineralogy, hydrocarbon content, and thickness across the same reservoir. In order to study the localized behavior of tight reservoirs; three wells that penetrated the Eaglebine formation in Texas were evaluated. The Eaglebine formation contains both the Eagle Ford and the Woodbine reservoirs. The combined Eagle Ford and Woodbine (Eaglebine) reservoir can sometimes exceed 1,000 feet in thickness. These reservoirs are present at depths between 6,500 and 15,000 feet in East Texas. In some areas, the Eaglebine contains a large percentage of silica-rich sands interbedded in organic rich shale and carbonate layers. This paper investigates the reasons as to why same hydraulic fracturing techniques should not be applied necessarily for every well in the same geological area. Furthermore, it demonstrates how we can exploit the localized reservoir behavior to plan for future wells despite limited data availability. Data from mud logs, well logs, and cores, including mineralogy and geomechanical data are integrated to build the localized reservoir characterization model that can be used to plan how each individual well should be hydraulically fractured. The model provides information such as location of organic-rich zones, brittle zones, and ductile zones in a geological area. Lastly, it recommends the type of fracture fluid that can yield a successful stimulation operation in ductile or brittle zones.
Tight reservoirs with low and ultralow permeability must be successfully stimulated to produce at economic oil or gas rates. For this reason, costs of drilling and completing wells are very high in tight reservoirs. In order to reduce these costs, operators have often tried to replicate the same or similar hydraulic fracturing designs that have been successfully used in previous wells in the same geological area. This strategy sometimes results in unexpected surprises and operational challenges leading to unsuccessful stimulations and poor production performance. The major reason behind these challenges is that tight reservoirs exhibit a localized behavior with changes in reservoir quality such as mineralogy, hydrocarbon content, and thickness across the same reservoir. In order to study the localized behavior of tight reservoirs; three wells that penetrated the Eaglebine formation in Texas were evaluated. The Eaglebine formation contains both the Eagle Ford and the Woodbine reservoirs. The combined Eagle Ford and Woodbine (Eaglebine) reservoir can sometimes exceed 1,000 feet in thickness. These reservoirs are present at depths between 6,500 and 15,000 feet in East Texas. In some areas, the Eaglebine contains a large percentage of silica-rich sands interbedded in organic rich shale and carbonate layers. This paper investigates the reasons as to why same hydraulic fracturing techniques should not be applied necessarily for every well in the same geological area. Furthermore, it demonstrates how we can exploit the localized reservoir behavior to plan for future wells despite limited data availability. Data from mud logs, well logs, and cores, including mineralogy and geomechanical data are integrated to build the localized reservoir characterization model that can be used to plan how each individual well should be hydraulically fractured. The model provides information such as location of organic-rich zones, brittle zones, and ductile zones in a geological area. Lastly, it recommends the type of fracture fluid that can yield a successful stimulation operation in ductile or brittle zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.