Life satisfaction significantly contributes to wellbeing and is linked to positive outcomes for individual people and society more broadly. However, previous research demonstrates that many factors contribute to the life satisfaction of an individual person, including: demography, socioeconomic status, health, deprivation, family life, friendships, social networks, living environment, and the broad range of behaviours enacted by the person, such as helping or volunteering. Consequently, it is challenging to disentangle the factors that contribute most significantly to life satisfaction, and thus more importantly, inform public policies designed to help foster positive wellbeing. We analyse primary survey data (n=2849) on self-reported life satisfaction in relation to a range of self-reported and observed variables associated with wellbeing. Specifically, we draw on a massive paired dataset related to use of a food sharing application in London, to augment the analysis using additional socioeconomic, environmental, and behavioural variables. Through a random forest machine learning approach and variable importance measures, we evaluate how a range of factors, that are often only evaluated individually, provide relative contributions towards life satisfaction. Result reveal that factors such as employment and social reliance contribute most significantly towards the experience of life satisfaction.