2020
DOI: 10.3390/en13133302
|View full text |Cite
|
Sign up to set email alerts
|

Understanding Computational Methods for Solar Envelopes Based on Design Parameters, Tools, and Case Studies: A Review

Abstract: The increasing population density in urban areas simultaneously impacts the trend of energy consumption in building sectors and the urban heat island (UHI) effects of urban infrastructure. Accordingly, passive design strategies to create sustainable buildings play a major role in addressing these issues, while solar envelopes prove to be a relevant concept that specifically considers the environmental performance aspects of a proposed building given their local contexts. As significant advances have be… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
1
1

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 41 publications
0
2
0
Order By: Relevance
“…Since then, various computational methods of solar envelopes, such as descriptive geometry, solar obstruction angle, and constructive solid geometry have been defined [19]. These approaches have successfully demonstrated the concept of solar envelopes into various urban settings (e.g., single building, open space, and urban scale) and multiple functional utilities (e.g., housing, offices, and commercial buildings).…”
Section: General Backgroundmentioning
confidence: 99%
See 1 more Smart Citation
“…Since then, various computational methods of solar envelopes, such as descriptive geometry, solar obstruction angle, and constructive solid geometry have been defined [19]. These approaches have successfully demonstrated the concept of solar envelopes into various urban settings (e.g., single building, open space, and urban scale) and multiple functional utilities (e.g., housing, offices, and commercial buildings).…”
Section: General Backgroundmentioning
confidence: 99%
“…It is regulated based on specific space-time constraints [18]. According to this principle, solar envelopes can be transformed into geographic and climatic properties within the size of on-site buildings [19]. Geographic properties deal with a group of parameters that define the spatial relationship between the design plot and existing context related to orientation typology, surrounding facades, sidewalks, building height, longitude, latitude, floor area ratio (FAR), setback, shadow fences, and street sizes.…”
Section: Solar Envelopesmentioning
confidence: 99%