Purpose
The purpose of this paper is to review and examine three of the most common corrosion characterization techniques specifically on Sn-Zn solders. The discussion will highlight the configurations and recent developments on each of the compiled characterization techniques of potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy (EIS).
Design/methodology/approach
The approach will incorporate a literature review of previous works related to the experimental setups and common parameters.
Findings
The potentiostatic polarization, potentiodynamic polarization and EIS were found to provide crucial and vital information on the corrosion properties of Sn-Zn solders. Accordingly, this solder relies heavily on the amount of Zn available because of the inability to produce the intermetallic compound in between the elements. Further, the excellent mechanical properties and low melting temperature of the Sn-Zn solder is undeniable, however, the limitations regarding corrosion resistance present opportunities in furthering research in this field to identify improvements. This is to ensure that the corrosion performance can be aligned with the outstanding mechanical properties. The review also identified and summarized the advantages, recent trends and important findings in this field.
Originality/value
The unique challenges and future research directions regarding corrosion measurement in Sn-Zn solders were shown to highlight the rarely discussed risks and problems in the reliability of lead-free soldering. Many prior reviews have been undertaken of the Sn-Zn system, but limited studies have investigated the corrosive properties. Therefore, this review focuses on the corrosive characterizations of the Sn-Zn alloy system.