Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As part of an Equinor technical efficiency programme that was initiated in 2015 to deliver savings and improvements, bridging particles were removed from the drilling fluids of 15 wells on Oseberg Main and instead loss control material (LCM) was used, as required, in some but not all the wells. These long, horizontal wells were a combination of open hole (OH) and sand screens with and without inflow control together with cased & perforated (C&P) completions, producing from typical Brent Group sandstone formations with permeabilities varying from approximately 10 mD to Darcy sands, and which were depleted by as much as approximately 280 bars. In 2018, an extensive study was performed on these wells to determine the impact on inflow performance of drilling without bridging particles. It was realized that the 15 wells offered a worst-case scenario to study in the field rather than laboratory the significance of formation damage on well productivity. The data set generated offered a unique opportunity to challenge conventional formation damage assertions, especially for long, horizontal wells, examples of which are as follows. Formation damage reduces productivity Significant mud losses with deep penetration lead to wells with lower than expected inflow performance Bridging particles are required to prevent formation damage around the near wellbore Drilling through heavily depleted reservoirs will result in severe formation damage Excessive use of graphite in an OH reservoir section will reduce inflow performance The influence of different parameters, including loss control materials, lower completion design, loss type, mud penetration depth, dynamic overbalance while drilling, length of production interval, net to gross (NTG) and kh were considered for those wells drilled without bridging particles. One of the surprising findings was that there was no clear evidence that losses were detrimental to the productivity of these long horizontal wells, i.e. it would appear that the Brent reservoir sections, despite being depleted, were more resistant to the influence of formation damage on inflow performance than first thought. Furthermore, for this example bridging particles appear to be of less importance in the avoidance of formation damage but are important in preventing excessive increases in fluid costs due to losses. After a thorough review of all the data obtained from this study, together with the conclusions drawn, it was realized that these had direct implications for Equinor's approach to fluid qualification, and especially coreflooding. The most important conclusion that influenced this change in approach was that the long reservoir sections (approximately 1 km or more) within typical Brent heterogeneous formations appear to tolerate more formation damage without impairing the productivity index (PI). A direct consequence of this was the conclusion that more emphasis should be placed on fluid compatibility, mobility, screen plugging and stability along with particle size distribution (PSD) design while the importance of coreflooding to fluid qualification was downgraded for Brent and reservoirs of similar chacteristics. This is not to say that coreflooding will not be performed, but rather it will be targeted towards situations where the influence of formation damage on well productivity is more significant, e.g. HTHP fields where special drilling and completion fluids are required, low permeable formations without mechanical stimulation, and shallow reservoirs with low reservoir temperature. This paper will perform an evaluation of the significance of formation damage on well productivity and use this to demonstrate Equinor's revised approach to formation damage laboratory evaluation based upon field experiences.
As part of an Equinor technical efficiency programme that was initiated in 2015 to deliver savings and improvements, bridging particles were removed from the drilling fluids of 15 wells on Oseberg Main and instead loss control material (LCM) was used, as required, in some but not all the wells. These long, horizontal wells were a combination of open hole (OH) and sand screens with and without inflow control together with cased & perforated (C&P) completions, producing from typical Brent Group sandstone formations with permeabilities varying from approximately 10 mD to Darcy sands, and which were depleted by as much as approximately 280 bars. In 2018, an extensive study was performed on these wells to determine the impact on inflow performance of drilling without bridging particles. It was realized that the 15 wells offered a worst-case scenario to study in the field rather than laboratory the significance of formation damage on well productivity. The data set generated offered a unique opportunity to challenge conventional formation damage assertions, especially for long, horizontal wells, examples of which are as follows. Formation damage reduces productivity Significant mud losses with deep penetration lead to wells with lower than expected inflow performance Bridging particles are required to prevent formation damage around the near wellbore Drilling through heavily depleted reservoirs will result in severe formation damage Excessive use of graphite in an OH reservoir section will reduce inflow performance The influence of different parameters, including loss control materials, lower completion design, loss type, mud penetration depth, dynamic overbalance while drilling, length of production interval, net to gross (NTG) and kh were considered for those wells drilled without bridging particles. One of the surprising findings was that there was no clear evidence that losses were detrimental to the productivity of these long horizontal wells, i.e. it would appear that the Brent reservoir sections, despite being depleted, were more resistant to the influence of formation damage on inflow performance than first thought. Furthermore, for this example bridging particles appear to be of less importance in the avoidance of formation damage but are important in preventing excessive increases in fluid costs due to losses. After a thorough review of all the data obtained from this study, together with the conclusions drawn, it was realized that these had direct implications for Equinor's approach to fluid qualification, and especially coreflooding. The most important conclusion that influenced this change in approach was that the long reservoir sections (approximately 1 km or more) within typical Brent heterogeneous formations appear to tolerate more formation damage without impairing the productivity index (PI). A direct consequence of this was the conclusion that more emphasis should be placed on fluid compatibility, mobility, screen plugging and stability along with particle size distribution (PSD) design while the importance of coreflooding to fluid qualification was downgraded for Brent and reservoirs of similar chacteristics. This is not to say that coreflooding will not be performed, but rather it will be targeted towards situations where the influence of formation damage on well productivity is more significant, e.g. HTHP fields where special drilling and completion fluids are required, low permeable formations without mechanical stimulation, and shallow reservoirs with low reservoir temperature. This paper will perform an evaluation of the significance of formation damage on well productivity and use this to demonstrate Equinor's revised approach to formation damage laboratory evaluation based upon field experiences.
Summary As part of an Equinor technical efficiency program that was initiated in 2015 to deliver savings and improvements, bridging particles were removed from the drilling fluids of 15 wells in Oseberg Main and instead loss control material (LCM) was used, as required, in some but not all the wells. These long, horizontal wells were a combination of open hole (OH) and sand screens with and without inflow control together with cased and perforated (C&P) completions, producing from typical Brent Group sandstone formations with permeabilities varying from approximately 10 md to darcy sandstones, and which were depleted by as much as approximately 280 bars. In 2018, an extensive study was performed on these wells to determine the impact on inflow performance of drilling without bridging particles. It was realized that the 15 wells offered a worst-case scenario to study in the field rather than laboratory the significance of formation damage on well productivity. The data set generated offered a unique opportunity to challenge conventional formation damage assertions, especially for long, horizontal wells. The influence of different parameters, including LCMs, lower completion design, loss type, mud penetration depth, dynamic overbalance while drilling, length of production interval, net to gross (NTG) and kh were considered for those wells drilled without bridging particles. One of the surprising findings was that there was no clear evidence that losses were detrimental to the productivity of these long horizontal wells; i.e., it would appear that the Brent reservoir sections, despite being depleted, were more resistant to the influence of formation damage on inflow performance than first thought. Furthermore, for this example bridging particles appear to be of less importance in the avoidance of formation damage but are important in preventing excessive increases in fluid costs due to losses. After a thorough review of all the data obtained from this study, together with the conclusions drawn, it was realized that these had direct implications for Equinor's approach to fluid qualification, and especially coreflooding. The most important conclusion that influenced this change in approach was that the long reservoir sections (approximately 1 km or more) within typical Brent heterogeneous formations appear to tolerate more formation damage without impairing the productivity index (PI). A direct consequence of this was the conclusion that more emphasis should be placed on fluid compatibility, mobility, screen plugging and stability along with particle-size distribution (PSD) design, while the importance of coreflooding to fluid qualification was downgraded for Brent and reservoirs of similar characteristics. This is not to say that coreflooding will not be performed, but rather it will be targeted toward situations where the influence of formation damage on well productivity is more significant; e.g., high-pressure and high-temperature fields where special drilling and completion fluids are required, low-permeability formations without mechanical stimulation, and shallow reservoirs with low reservoir temperature. In this paper, we will perform an evaluation of the significance of formation damage on well productivity and use this to demonstrate Equinor's revised approach to formation damage laboratory evaluation based on field experiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.