“…While field-based studies [Burns, 1998;Peterson et al, 2001;Duff et al, 2008;Mulholland et al, 2008Mulholland et al, , 2009Tank et al, 2008;Hall et al, 2009;Mulholland and Webster, 2010] and modeling approaches [Jaworski et al, 1992;Boynton et al, 1995;Alexander et al, 2000Alexander et al, , 2009Seitzinger et al, 2002;Boyer et al, 2006;Runkel, 2007;Ator and Denver, 2012] have provided much needed information on reach and watershed-scale nitrate dynamics, the limited spatial extent and/or low temporal resolution of discrete data collection continues to be a challenge for quantifying loads and interpreting drivers of change in watersheds. Recent studies have demonstrated that the collection and interpretation of high-frequency nitrate data collected using water quality sensors can be used to better quantify nitrate loads to sensitive stream and coastal environments [Ferrant et al, 2013;Bieroza et al, 2014;Pellerin et al, 2014], and provide insights into temporal nitrate dynamics that would otherwise be difficult to obtain using traditional field-based mass balance, solute injection, and/or isotopic tracer studies [Pellerin et al, 2009[Pellerin et al, , 2012Heffernan and Cohen, 2010;Sandford et al, 2013;Carey et al, 2014;Hensley et al, 2014Hensley et al, , 2015Outram et al, 2014;Crawford et al, 2015]. Coupling these measurements with techniques for quantifying water sources and/or flow paths [Gilbert et al, 2013;Bowes et al, 2015;Duncan et al, 2015] provides further opportunity for understanding and managing the drivers of coastal eutrophication.…”