Kumar, NTA, Radnor, JM, Oliver, JL, Lloyd, RS, CSCSD, Pedley, JS, Wong, MA, and Dobbs, IJ. The influence of maturity status on drop jump kinetics in male youth. J Strength Cond Res 38(1): 38–46, 2024—The aim of this study was to examine the effects of maturity status on drop jump (DJ) kinetics in young male athletes (categorized as early-pre–peak height velocity [PHV] [<−2.51 years], late-pre-PHV [−1.99 to −1.00 years], circa-PHV [−0.50 to 0.50 years], and post-PHV [>1.00 years]). All athletes performed a DJ from a 30-cm box onto force plates with performance variables (jump height, ground contact time, and reactive strength index) and absolute and relative kinetic variables during the braking and propulsive phases assessed. Subjects were categorized into GOOD (no impact-peak and spring-like), MODERATE (impact-peak and spring-like), or POOR (impact-peak and not spring-like) stretch-shortening cycle (SSC) function. The post-PHV group exhibited significantly greater values for most absolute kinetic variables compared with early-pre-PHV, late-pre-PHV, and circa-PHV (p < 0.05). The differences observed between consecutive maturity groups were similar in magnitude for most absolute variables (Cohen's d = 0.53–1.70). Post-PHV male athletes outperform their less mature counterparts during a DJ, and this may be attributed to the growth and maturity-related structural and motor control strategy changes that occur in children. Stretch-shortening cycle function in boys seems to improve with maturity status reflected by a greater number of post-PHV participants displaying GOOD SSC function (65.8%) and a greater number of early-pre-PHV participants displaying POOR SSC function (54.4%). However, a number of mature boys displayed POOR SSC function (17.8%), suggesting that the development of SSC function is not exclusively related to maturation.