The Covid-19 pandemic significantly changed education with social distancing and changes in the learning environment. In this study, one strong reason for the significance of the research is the urgency of changes in students' learning styles during the Covid-19 pandemic. Investigating differences in learning styles before and during the pandemic not only provides deep insight into students' adaptation to these changes, but also provides a foundation for the development of more inclusive and adaptive learning strategies in the future. This study aims to analyze the effect of the Covid-19 pandemic on students' learning styles in an educational context, focusing on the comparison of two classification methods, Naïve Bayes and Decision Tree. The study was conducted by collecting data on students' learning styles before and during the Covid-19 pandemic, using various relevant indicators. The data was obtained based on school survey results and online platforms, involving student characteristics and learning preferences. The data was then analyzed using Naïve Bayes and Decision Tree classification methods to identify significant changes in students' learning styles. The results showed the prediction accuracy of learning style changes with Naïve Bayes 68.75% and Decision Tree 87.50%. Recommendations for educators and education policy makers are to develop inclusive and adaptive learning strategies to meet diverse learning preferences.