Metal organic framework (MOF) is a type of porous organic material. In this work, three catalysts loaded with noble metal Pt were prepared by NaBH4 reduction method with three different morphologies of Ce–MOF as carriers. Their physicochemical properties were characterized by XRD, Raman, FTIR, N2 adsorption, SEM, XPS, and TGA. The catalytic performances of different catalysts were evaluated via toluene oxidation and CO2 selectivity. Rod–shaped Pt/MOF–BTC exhibited best catalytic performance compared to Pt/MOF–808 and Pt/UiO–66, its T50 and T90 were 140 °C and 149 °C, respectively. After deducting the effect of specific surface, Pt/MOF–BTC still had the lowest apparent activation energy (62.8 kJ·mol−1), which is due to the abundant atomic Pt and oxygen vacancy content on its surface. After the reaction, the structure of Pt/MOF–BTC may become amorphous according to XRD results. Furthermore, the presence of amorphous structure had no effect on the catalytic activity of the catalyst. In the stability test of Pt/MOF–BTC to toluene oxidation, both toluene conversion and CO2 selectivity remained at 100%, and remained stable for 11 h. Moreover, Pt/MOF–BTC also had better resistance to high weight hourly space velocity (WHSV) or water resistance. The catalyst maintained high catalytic activity for 3 times reusability. This study provides valuable experience for the future work of MOF in the field of VOC catalytic oxidation.