The flowing atmospheric pressure afterglow (FAPA) is a promising new source for atmospheric pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, applied current of 30 mA at 200 V for 6 watts of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (< 3% change at 450K) by water vapor during solution-aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M+H+). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer.