Vehicle-to-everything (V2X) communication is pivotal in enhancing cooperative awareness in vehicular networks. Typically, awareness is viewed as a vehicle’s ability to perceive and share real-time kinematic information. We present a novel definition of awareness in V2X communications, conceptualizing it as a multi-faceted concept involving vehicle detection, tracking, and maintaining their safety distances. To enhance this awareness, we propose a deep reinforcement learning framework for the joint control of beacon rate and transmit power (DRL-JCBRTP). Our DRL−JCBRTP framework integrates LSTM-based actor networks and MLP-based critic networks within the Soft Actor-Critic (SAC) algorithm to effectively learn optimal policies. Leveraging local state information, the DRL-JCBRTP scheme uses an innovative reward function to increase the minimum awareness failure distance. Our SLMLab-Gym-VEINS simulations show that the DRL-JCBRTP scheme outperforms existing beaconing schemes in minimizing awareness failure probability and maximizing awareness distance, ultimately improving driving safety.