China has achieved good results in SO2 pollution control, but SO2 pollution still exists in some areas. Analyzing the spatio-temporal distribution of SO2 is critical for regional SO2 pollution prevention and control. Compared with existing air pollution studies that paid more attention to PM2.5, NO2 and O3, and focused on the macro scale, this study took the small-scale Weifang city as the research area, analyzed the temporal and spatial changes in SO2, discussed the migration trajectory of SO2 pollution and explored the impact of wind on SO2 pollution. The results show that the average annual concentration of SO2 in Weifang has exhibited a downward trend in the past 13 years, showing the basic characteristics of “highest in winter, lowest in summer and slightly higher in spring and autumn”, “highest on Sunday, lowest on Thursday and gradually decreasing from Monday to Thursday” and “highest at 9 a.m., lowest at 4 p.m. and gradually increasing from midnight to 9 a.m.”. SO2 concentration showed obvious spatial heterogeneity: higher in the north and lower in the south. In addition, Shouguang, Changyi and Gaomi were seriously polluted. The SO2 pollution shifted from south to northeast. The clean wind direction (southeast wind and northeast wind) of Weifang city accounted for about 41%, and the pollution wind direction (northwest wind and west wind) accounted for about 7%. Drawing from the multi-scale analysis, vegetation, precipitation, temperature, transport situation and human activity were the most relevant factors. Limited to data collection, more quantitative research is needed to gain insight into the influence mechanism in the future.