Understanding the Influence of Rendering Parameters in Synthetic Datasets for Neural Semantic Segmentation Tasks
Manuel Silva,
Omar A. Mures,
Antonio Seoane
et al.
Abstract:Deep neural networks are well known for demanding large amounts of training data, motivating the appearance of multiple synthetic datasets covering multiple domains. However, synthetic datasets have not yet outperformed real data for autonomous driving applications, particularly for semantic segmentation tasks. Thus, a deeper comprehension about how the parameters involved in synthetic data generation could help in creating better synthetic datasets. This work provides a summary review of prior research coveri… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.