Synthesizing ceramic materials with a significant amount of deformability is one of the most important engineering pursuits. In this study, we demonstrate the emergence of metal-like plasticity through the crystallinity control in the monolithic zirconia with the vertically aligned honeycomb-like periodic nanopore structures fabricated using the anodizing technique. The crystalline orders of the nanoporous zirconia films vary between monoclinic, tetragonal, and amorphous phases after the heat treatment and/or proton irradiation, whereas the vertical pore structures are maintained. The micropillar compression tests on those samples reveal a large amount of plasticity, more than 20% of total stains, in the as-anodized and proton-irradiated samples, both of which contain the amorphous phase. In contrast, the fully crystallized zirconia that resulted from annealing at 500 °C shows the brittle failure, the typical characteristic of conventional ceramic foams. These results offer a new opportunity for the nanoporous ceramic materials to be used in various applications, benefited from the tunable structural stability.