Evaluation metrics such as precision, recall and normalized discounted cumulative gain have been widely applied in ad hoc retrieval experiments. They have facilitated the assessment of system performance in various topics over the past decade. However, the effectiveness of such metrics in capturing users’ in-situ search experience, especially in complex search tasks that trigger interactive search sessions, is limited. To address this challenge, it is necessary to adaptively adjust the evaluation strategies of search systems to better respond to users’ changing information needs and evaluation criteria. In this work, we adopt a taxonomy of search task states that a user goes through in different scenarios and moments of search sessions, and perform a meta-evaluation of existing metrics to better understand their effectiveness in measuring user satisfaction. We then built models for predicting task states behind queries based on in-session signals. Furthermore, we constructed and meta-evaluated new state-aware evaluation metrics. Our analysis and experimental evaluation are performed on two datasets collected from a field study and a laboratory study, respectively. Results demonstrate that the effectiveness of individual evaluation metrics varies across task states. Meanwhile, task states can be detected from in-session signals. Our new state-aware evaluation metrics could better reflect in-situ user satisfaction than an extensive list of the widely used measures we analyzed in this work in certain states. Findings of our research can inspire the design and meta-evaluation of user-centered adaptive evaluation metrics, and also shed light on the development of state-aware interactive search systems.