Variations in precipitation patterns under climate changes influence water availability, which has important implications for plants’ water use and the sustainability of vegetation. However, the water uptake patterns of the main forest species under different temporal spatial conditions of water availability remain poorly understood, especially in areas of high temporal spatial heterogeneity, such as the subtropical monsoon climate region of China. We investigated the water uptake patterns and physiological factors of the most widespread and coniferous forest species, Cunninghamia lanceolata L. and Pinus massoniana L., in the early wet season with short drought (NP), high antecedent precipitation (HP), and low antecedent precipitation (LP), as well as in the early dry season (DP), in edaphic and rocky habitats. The results showed that the two species mainly absorbed soil water from shallow layers, even in the short drought period in the wet season and switched to deeper layers in the early dry season in both habitats. It was noted that the trees utilized deep layers water in edaphic habitats when the antecedent rainfall was high. The two species showed no significant differences in water uptake depth, but exhibited notably distinct leaf water potential behavior. C. lanceolata maintained less negative predawn and midday water potential, whereas P. massoniana showed higher diurnal water potential ranges. Moreover, the water potential of P. massoniana was negatively associated with the antecedent precipitation amount. These results indicate that for co-existing species in these communities, there is significant eco-physiological niche segregation but no eco-hydrological segregation. For tree species in two habitats, the water uptake depth was influenced by the avaliable soil water but the physiological factors were unchanged, and were determined by the species’ genes. Furthermore, during the long drought in the growing season, we observed probable divergent responses of C. lanceolata and P. massoniana, such as growth restriction for the former and hydraulic failure for the latter. However, when the precipitation was heavy and long, these natural species were able to increase the ecohydrological linkages between the ecosystem and the deep-layer system in this edaphic habitat.