Understanding the Retro‐Cope Elimination Reaction of Linear Alkynes
Steven E. Beutick,
Song Yu,
Laura Orian
et al.
Abstract:The bioorthogonal retro‐Cope elimination reaction of linear alkynes R3C−C≡C−X (R3 = combinations of H, MeO, F; X = H, F, Cl, Br, I) with N,N‐dimethylhydroxylamine was quantum chemically investigated using relativistic density functional theory at ZORA‐BP86/TZ2P. This novel reaction can be tuned through judicious substitution of the alkyne at both the terminal and propargylic position to render second‐order kinetics that rival and out‐compete strain‐promoted variants. Activation strain and quantitative molecula… Show more
Diversify your bonds! The reactivity of preactivated cycloalkynes in the retro-Cope elimination reaction was quantum chemically investigated. Based on our finding, we rationally designed a suite of next-generation reagents.
Diversify your bonds! The reactivity of preactivated cycloalkynes in the retro-Cope elimination reaction was quantum chemically investigated. Based on our finding, we rationally designed a suite of next-generation reagents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.