a b s t r a c tThe concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000 C) in biomass char have been studied. A roomtemperature electron spin resonance spectroscopy study was conducted on original wood, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7$10 16 and 1.5$10 18 spins g
À1. The results indicated that the biomass major constituents (cellulose, hemicellulose, lignin) had a minor effect on remaining radical concentrations compared to potassium and silica contents. The higher radical concentrations in the wheat straw chars from the decay stage of pyrolysis in the entrained flow reactor compared to the wood chars were related to the decreased mobility of potassium in the char matrix, leading to the less efficient catalytic effects of potassium on the bond-breaking and radical re-attachments. The high Si levels in the rice husk caused an increase in the char radical concentration compared to the wheat straw because the free radicals were trapped in a char consisting of a molten amorphous silica at heating rates of 10 3 e10 4 K s
À1. The experimental electron spin resonance spectroscopy spectra were analyzed by fitting to simulated data in order to identify radical types, based on g-values and line widths. The results show that at high temperatures, mostly aliphatic radicals (g ¼ 2.0026e2.0028) and PAH radicals (g ¼ 2.0027e2.0031) were formed.