Understanding user intent modeling for conversational recommender systems: a systematic literature review
Siamak Farshidi,
Kiyan Rezaee,
Sara Mazaheri
et al.
Abstract:User intent modeling in natural language processing deciphers user requests to allow for personalized responses. The substantial volume of research (exceeding 13,000 publications in the last decade) underscores the significance of understanding prevalent models in AI systems, with a focus on conversational recommender systems. We conducted a systematic literature review to identify models frequently employed for intent modeling in conversational recommender systems. From the collected data, we developed a deci… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.