Fishing nets are dangerous obstacles for an underwater robot whose aim is to reach a goal in unknown underwater environments. This paper proposes how to make the robot reach its goal, while avoiding fishing nets that are detected using the robot’s camera sensors. For the detection of underwater nets based on camera measurements of the robot, we can use deep neural networks. Passive camera sensors do not provide the distance information between the robot and a net. Camera sensors only provide the bearing angle of a net, with respect to the robot’s camera pose. There may be trailing wires that extend from a net, and the wires can entangle the robot before the robot detects the net. Moreover, light, viewpoint, and sea floor condition can decrease the net detection probability in practice. Therefore, whenever a net is detected by the robot’s camera, we make the robot avoid the detected net by moving away from the net abruptly. For moving away from the net, the robot uses the bounding box for the detected net in the camera image. After the robot moves backward for a certain distance, the robot makes a large circular turn to approach the goal, while avoiding the net. A large circular turn is used, since moving close to a net is too dangerous for the robot. As far as we know, our paper is unique in addressing reactive control laws for approaching the goal, while avoiding fishing nets detected using camera sensors. The effectiveness of the proposed net avoidance controls is verified using simulations.