Underwater mobile acoustic source target localization encounters several challenges, including the unknown propagation speed of the source signal, uncertainty in the observation platform’s position and velocity (i.e., platform systematic errors), and economic costs. This paper proposes a new two-step closed-form localization algorithm that jointly estimates the angle of arrival (AOA), time difference of arrival (TDOA), and frequency difference of arrival (FDOA) to address these challenges. The algorithm initially introduces auxiliary variables to construct pseudo-linear equations to obtain the initial solution. It then exploits the relationship between the unknown and auxiliary variables to derive the exact solution comprising solely the unknown variables. Both theoretical analyses and simulation experiments demonstrate that the proposed method accurately estimates the position, velocity, and speed of the sound source even with an unknown sound speed and platform systematic errors. It achieves asymptotic optimality within a reasonable error range to approach the Cramér–Rao lower bound (CRLB). Furthermore, the algorithm exhibits low complexity, reduces the number of required localization platforms, and decreases the economic costs. Additionally, the simulation experiments validate the effectiveness of the proposed localization method across various scenarios, outperforming other comparative algorithms.