The ever-increasing demands for the use of fiber-optic sensors powered by long optical fibers is forcing developers to solve problems associated with powering these remote sensors. Due to their non-electric character, these sensors are suitable for many uses, including military applications. The Army of the Czech Republic is very interested in this type of optical fiber sensor as it fulfils the significant prerequisites for use in military areas. However, the army’s requirements are challenging because they require long supply cables in which there is significant attenuation of optical power. At the same time, there is a need for high sensitivity. The subject of our research team’s work was to use amplifiers to power these sensors. The army already uses this type of sensor for short distances as it cannot ignite a gas mixture with an explosive concentration and thus meet the strict requirements of the explosion-poof standard. The novelty of our research lies in the discovered measurement technique that allows the sensors to be powered remotely and in the saving of optical fibers by utilizing duplex communication with a circulator. Furthermore, the research presents an innovative approach to the optimization of the entire sensor by using a bidirectional, sensory, polarization-maintaining optical fiber. The proposed sensor was first verified in laboratory conditions at the Optoelectronics Laboratory of the University of Defense in Brno, and further tests were carried out in the military training areas of Boletice and Březina in the Czech Republic, which is a member of North Atlantic Treaty Organization.