Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here we report for the first time that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulates the abundance of specific C4-methyl sterols lophenol and dihydro-TMAS. Highlighting its clinical relevance, FAXDC2 is repressed in Wnt/β-catenin high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulates in the cancerous tissues and not in adjacent normal tissues. FAXDC2 links Wnts to RTK/MAPK signaling. Wnt inhibition drives increased recycling of RTKs and activation of the MAPK pathway, and this requires FAXDC2. Blocking Wnt signaling in Wnt-high cancers causes both differentiation and senescence; and this is prevented by knockout of FAXDC2. Our data shows the integration of three ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.Abstract Figure