Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, based on facial landmark approaches, the possible vulnerability of ensemble algorithms to the FGSM attack has been assessed using three commonly used models: convolutional neural network-based antialiasing (A_CNN), Xc_Deep2-based DeepLab v2, and SqueezeNet (Squ_Net)-based Fire modules. Firstly, the three individual deep learning classifier-based Facial Emotion Recognition (FER) classifications have been developed; the predictions from all three classifiers are then merged using majority voting to develop the HEM_Net-based ensemble model. Following that, an in-depth investigation of their performance in the case of attack-free has been carried out in terms of the Jaccard coefficient, accuracy, precision, recall, F1 score, and specificity. When applied to three benchmark datasets, the ensemble-based method (HEM_Net) significantly outperforms in terms of precision and reliability while also decreasing the dimensionality of the input data, with an accuracy of 99.3%, 87%, and 99% for the Extended Cohn-Kanade (CK+), Real-world Affective Face (RafD), and Japanese female facial expressions (Jaffee) data, respectively. Further, a comprehensive analysis of the drop in performance of every model affected by the FGSM attack is carried out over a range of epsilon values (the perturbation parameter). The results from the experiments show that the advised HEM_Net model accuracy declined drastically by 59.72% for CK + data, 42.53% for RafD images, and 48.49% for the Jaffee dataset when the perturbation increased from A to E (attack levels). This demonstrated that a successful Fast Gradient Sign Method (FGSM) can significantly reduce the prediction performance of all individual classifiers with an increase in attack levels. However, due to the majority voting, the proposed HEM_Net model could improve its robustness against FGSM attacks, indicating that the ensemble can lessen deception by FGSM adversarial instances. This generally holds even as the perturbation level of the FGSM attack increases.
In this paper, based on facial landmark approaches, the possible vulnerability of ensemble algorithms to the FGSM attack has been assessed using three commonly used models: convolutional neural network-based antialiasing (A_CNN), Xc_Deep2-based DeepLab v2, and SqueezeNet (Squ_Net)-based Fire modules. Firstly, the three individual deep learning classifier-based Facial Emotion Recognition (FER) classifications have been developed; the predictions from all three classifiers are then merged using majority voting to develop the HEM_Net-based ensemble model. Following that, an in-depth investigation of their performance in the case of attack-free has been carried out in terms of the Jaccard coefficient, accuracy, precision, recall, F1 score, and specificity. When applied to three benchmark datasets, the ensemble-based method (HEM_Net) significantly outperforms in terms of precision and reliability while also decreasing the dimensionality of the input data, with an accuracy of 99.3%, 87%, and 99% for the Extended Cohn-Kanade (CK+), Real-world Affective Face (RafD), and Japanese female facial expressions (Jaffee) data, respectively. Further, a comprehensive analysis of the drop in performance of every model affected by the FGSM attack is carried out over a range of epsilon values (the perturbation parameter). The results from the experiments show that the advised HEM_Net model accuracy declined drastically by 59.72% for CK + data, 42.53% for RafD images, and 48.49% for the Jaffee dataset when the perturbation increased from A to E (attack levels). This demonstrated that a successful Fast Gradient Sign Method (FGSM) can significantly reduce the prediction performance of all individual classifiers with an increase in attack levels. However, due to the majority voting, the proposed HEM_Net model could improve its robustness against FGSM attacks, indicating that the ensemble can lessen deception by FGSM adversarial instances. This generally holds even as the perturbation level of the FGSM attack increases.
Multi-beam sonar imaging detection technology is increasingly becoming the mainstream technology in fields such as hydraulic safety inspection and underwater target detection due to its ability to generate clearer images under low-visibility conditions. However, during the multi-beam sonar detection process, issues such as low image resolution and blurred imaging edges lead to decreased target segmentation accuracy. Traditional filtering methods for echo signals cannot effectively solve these problems. To address these challenges, this paper introduces, for the first time, a multi-beam sonar dataset against the background of simulated crack detection for dam safety. This dataset included simulated cracks detected by multi-beam sonar from various angles. The width of the cracks ranged from 3 cm to 9 cm, and the length ranged from 0.2 m to 1.5 m. In addition, this paper proposes a BS-UNet semantic segmentation algorithm. The Swin-UNet model incorporates a dual-layer routing attention mechanism to enhance the accuracy of sonar image detail segmentation. Furthermore, an online convolutional reparameterization structure was added to the output end of the model to improve the model’s capability to represent image features. Comparisons of the BS-UNet model with commonly used semantic segmentation models on the multi-beam sonar dataset consistently demonstrated the BS-UNet model’s superior performance, as it improved semantic segmentation evaluation metrics such as Precision and IoU by around 0.03 compared to the Swin-UNet model. In conclusion, BS-UNet can effectively be applied in multi-beam sonar image segmentation tasks.
The encroachment of buildings into the waters of rivers and lakes can lead to increased safety hazards, but current semantic segmentation algorithms have difficulty accurately segmenting buildings in such environments. The specular reflection of the water and boats with similar features to the buildings in the environment can greatly affect the performance of the algorithm. Effectively eliminating their influence on the model and further improving the segmentation accuracy of buildings near water will be of great help to the management of river and lake waters. To address the above issues, the present study proposes the design of a U-shaped segmentation network of buildings called RDAU-Net that works through extraction and fuses a convolutional neural network and a transformer to segment buildings. First, we designed a residual dynamic short-cut down-sampling (RDSC) module to minimize the interference of complex building shapes and building scale differences on the segmentation results; second, we reduced the semantic and resolution gaps between multi-scale features using a multi-channel cross fusion transformer module (MCCT); finally, a double-feature channel-wise fusion attention (DCF) was designed to improve the model’s ability to depict building edge details and to reduce the influence of similar features on the model. Additionally, an HRI Building dataset was constructed, comprising water-edge buildings situated in a riverine and lacustrine regulatory context. This dataset encompasses a plethora of water-edge building sample scenarios, offering a comprehensive representation of the subject matter. The experimental results indicated that the statistical metrics achieved by RDAU-Net using the HRI and WHU Building datasets are better than those of others, and that it can effectively solve the building segmentation problems in the management of river and lake waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.