Omics-based technologies have been largely adopted during this unprecedented global COVID-19 pandemic, allowing the scientific community to perform research on a large scale to understand the pathobiology of the SARS-CoV-2 infection and its replication into human cells. The application of omics techniques has been addressed to every level of application, from the detection of mutations, methods of diagnosis or monitoring, drug target discovery, and vaccine generation, to the basic definition of the pathophysiological processes and the biochemical mechanisms behind the infection and spread of SARS-CoV-2. Thus, the term COVIDomics wants to include those efforts provided by omics-scale investigations with application to the current COVID-19 research. This review summarizes the diverse pieces of knowledge acquired with the application of COVIDomics techniques, with the main focus on proteomics and metabolomics studies, in order to capture a common signature in terms of proteins, metabolites, and pathways dysregulated in COVID-19 disease. Exploring the multiomics perspective and the concurrent data integration may provide new suitable therapeutic solutions to combat the COVID-19 pandemic.