2019
DOI: 10.1021/jacs.8b12223
|View full text |Cite
|
Sign up to set email alerts
|

Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis

Abstract: The hydrated electron is experiencing a renaissance as a superreductant in lab-scale reductions driven by light, both for the degradation of recalcitrant pollutants and for challenging chemical reactions. However, examples for its sustainable generation under mild conditions are scarce. By combining a water-soluble Ir catalyst with unique photochemical properties and an inexpensive diode laser as light source, we produce hydrated electrons through a two-photon mechanism previously thought to be unimportant for… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
148
1
8

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
1

Relationship

3
5

Authors

Journals

citations
Cited by 145 publications
(159 citation statements)
references
References 57 publications
2
148
1
8
Order By: Relevance
“…For instance, the dependence of the product yield on the excitation power ( P ) is a relatively straightforward experiment (Figure a). In the initial phase of a biphotonic reaction, the product yield is frequently expected to show a quadratic dependence on P . Thus, doubling the excitation power from P 1 to P 2 =2⋅ P 1 will not simply result in a doubled yield as for monophotonic reactions (green line in Figure a), but instead one expects a four‐fold increase of the yield for a biphotonic reaction (red line in Figure a).…”
Section: Kinetic Aspects and Pertinent Methods In Multi‐photon Excitamentioning
confidence: 99%
See 1 more Smart Citation
“…For instance, the dependence of the product yield on the excitation power ( P ) is a relatively straightforward experiment (Figure a). In the initial phase of a biphotonic reaction, the product yield is frequently expected to show a quadratic dependence on P . Thus, doubling the excitation power from P 1 to P 2 =2⋅ P 1 will not simply result in a doubled yield as for monophotonic reactions (green line in Figure a), but instead one expects a four‐fold increase of the yield for a biphotonic reaction (red line in Figure a).…”
Section: Kinetic Aspects and Pertinent Methods In Multi‐photon Excitamentioning
confidence: 99%
“…Aiming to exploit the mechanism of Figure under continuous‐wave (non‐pulsed) irradiation conditions, we discovered that the [Ir(sppy) 3 ] complex (Table , entry 2) catalyzes the formation of hydrated electrons in the presence of triethanolamine (TEAO) or ascorbate . A diode laser (447 nm) sufficed for the 50‐mg‐scale photoreduction of 4‐(trifluoromethyl)benzoate to the corresponding difluoromethyl compound as well as for the decomposition of a benzylammonium cation.…”
Section: Consecutive Photo‐excitation In the Simplest Casementioning
confidence: 99%
“…Mit dem Ziel vor Augen, den Mechanismus von Abbildung unter cw‐Bestrahlungsbedingungen (nicht gepulst) anzuwenden, haben wir entdeckt, dass der Komplex [Ir(sppy) 3 ] (Tabelle , Eintrag 2) die Freisetzung hydratisierter Elektronen in Gegenwart von Triethanolamin (TEOA) oder Ascorbat katalysiert . Ein Diodenlaser (447 nm) genügt für die Photoreduktion von 4‐(Trifluormethyl)benzoat zur zugehörigen Difluormethylverbindung im 50‐mg‐Maßstab sowie für die Zersetzung eines Benzylammoniumkations.…”
Section: Konsekutive Lichtanregung Im Einfachsten Fallunclassified
“…Folglich ist die PC‐Photostabilität ein Schlüsselfaktor, dem gebührende Beachtung zu schenken ist. [Ir(sppy) 3 ] ist selbst bei intensiven Langzeitbestrahlungen bemerkenswert robust, was zum Teil die Erklärung für das Ablaufen der Reaktionen in Tabelle (Einträge 2 und 3) liefert. Dies trifft jedoch nicht für alle PCs zu, wie nachfolgend ausführlich diskutiert wird (Abschnitte 3, 4 und 8).…”
Section: Konsekutive Lichtanregung Im Einfachsten Fallunclassified
“…First, we access a" super-reductant" (the hydrated electron e À aq ;s tandard potential, À2.9 V) [6] through photon pooling but withoutt he necessity of storing the energy of the first photon in al ong-lived intermediate, as al ow-intensity source would mandate. [7,8] The advantage of the two-photon approachl ies in its longer operating wavelength, which is not absorbed so strongly and by so many substrates as is the UV-C ( % 250 nm) used by the iodide and sulfite processes of e À aq generation. [9][10][11] Second, we prepare e À aq in high local concentration such that its rapid interceptionb yachloro-organic to give ac hloride ion and a carbon-centred radicalf avoursd imerization of the latter over the usual decay pathwayso fh ydrogen abstraction from a donor or addition to ac oupling component.…”
Section: Introductionmentioning
confidence: 99%