2019
DOI: 10.5194/acp-2019-684
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Unexpected long-range transport of glyoxal and formaldehyde observed from the Copernicus Sentinel-5 Precursor satellite during the 2018 Canadian wildfires

Abstract: <p><strong>Abstract.</strong> Glyoxal (CHO.CHO) and formaldehyde (HCHO) are intermediate products in the oxidation of the majority of volatile organic compounds (VOC). CHO.CHO is also a precursor of secondary organic aerosol (SOA) formation in the atmosphere. These VOCs are released from biogenic, anthropogenic, and pyrogenic sources. CHO.CHO and HCHO tropospheric lifetimes are short during the daytime and at mid-latitudes (few hours), as they are rapidly removed from … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

8
20
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 13 publications
(29 citation statements)
references
References 31 publications
8
20
0
1
Order By: Relevance
“…(2015). The negative model bias at night, when primary sources dominate, may be an artifact of model resolution, or unresolved long‐range transport (e.g., Alvarado et al, 2020). We find mean errors in model‐simulated HCHO are smaller on a daily basis than for the OMI overpass time alone.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…(2015). The negative model bias at night, when primary sources dominate, may be an artifact of model resolution, or unresolved long‐range transport (e.g., Alvarado et al, 2020). We find mean errors in model‐simulated HCHO are smaller on a daily basis than for the OMI overpass time alone.…”
Section: Discussionmentioning
confidence: 99%
“…(2019) investigated both modeled and satellite‐based relationships between HCHO and organic aerosols. Satellite‐based HCHO has also been used to derive column hydroxyl radical amounts in the remote troposphere (Wolfe et al., 2019) and to identify long‐range transport of biomass burning plumes over North America (Alvarado et al., 2020). The most direct application of HCHO satellite data to air quality management has been in the area of characterizing ozone production regimes (e.g., Duncan et al., 2010; Jin et al., 2020, 2017; Jin & Holloway, 2015; Martin et al., 2004; Schroeder et al., 2016; Souri et al., 2020; Sun et al., 2018).…”
Section: Introductionmentioning
confidence: 99%
“…The glyoxal algorithm presented here largely inherits from past developments for predecessor nadir-viewing satellite sensors (Alvarado et al, 2014(Alvarado et al, , 2020aChan Miller et al, 2014;Lerot et al, 2010;Vrekoussis et al, 2009;Wittrock et al, 2006). Figure 1 illustrates for 1 full day of TROPOMI data the resulting main output of every algorithmic component, which we further describe in the following sections, with emphasis on their specificities.…”
Section: Description Of the Algorithmmentioning
confidence: 99%
“…With an enhanced spatial resolution resulting in a number of observations more than 10 times larger than provided by its predecessor OMI, the TROPOspheric Monitoring Instrument (TROPOMI), operating since 2017, allows for observing weak atmospheric absorbers with an unprecedented level of spatio-temporal detail. This has been illustrated by Alvarado et al (2020a), who investigated the large amounts of formaldehyde and glyoxal emitted by the intense North American wildfires in August 2018 as observed by TROPOMI for several days and over long distances. Theys et al (2020) have evaluated the respective contributions to the hydroxyl radical production in fresh fire plumes from nitrous acid, VOCs and other sources with the support of different TROPOMI data sets, including the glyoxal data product described here.…”
Section: Introductionmentioning
confidence: 98%
“…法获取大气边界层内 VOCs 物种浓度的垂直分布数据 [39,40] 。随着民用无人机产业的快速发 展,许多性能优异(载荷大、续航时间长和操控稳定度高等)且价格低廉的中小型无人机被 广泛用于大气监测领域,获取边界层内各类大气参数的垂直分布数据 [41] 。无人机是近些年来 较为热门的大气垂直观测平台,基于无人机平台的各种优异性能,其在大气垂直观测领域有 广阔的应用前景。 无人机平台的优点在于其机动灵活性较高,能够在复杂环境中使用 [42] ,对后勤保障和观 测场地的要求较低,且其使用成本也相对低廉 [43] 。使用电池驱动的无人机可以有效避免燃油 废气排放对 VOCs 观测样本可能造成的污染,提高观测数据的可靠性 [44][45][46] 。虽然无人机平台 具有较好的操控性和灵活机动性,但也存在诸多因素限制。首先,受当前电池技术发展的限 制,无人机的续航时间仍然不足,有效载重较小,并且续航时间随附加设备重量的增加而急 剧下降 [47] ,严重限制了一个航次中能够有效获取的观测样本数量;其次,无人机平台主要使 用离线分析方法获取 VOCs 物种浓度的垂直分布数据,数据的时空分辨率通常较低 [48] [49][50][51] 。 比如, Zhou 等人研发的空气检测传感器 (Kolibri) 就是应用于无人机上的低成本检测传感器,它包括 VOCs 和颗粒物采集器以及黑炭分析仪 [49] 。Chen 等人设计用于无人机平台的苏玛罐采集系统,这种无人机有效载荷 1 kg,能满足 250 m 以下采样需求 [50] 。 1.5 遥感技术 遥感技术可以分为卫星遥感和地面遥感, 地面遥感技术主要使用激光雷达遥感 (Lidar) 和差分吸收光谱技术(DOAS) 。卫星遥感是借助传感器对远距离环境辐射和反射的电磁波 信号进行收集与处理 [52] ;激光雷达遥感是向目标发射激光束,将反射信号与发射信号比较并 适当处理,获取 VOCs 浓度的垂直分布数据 [53][54][55] 。 遥感技术作为长期稳定的监测手段,能及时反馈地球大气中关键 VOCs 组分浓度的时 空分布信息,例如卫星遥感能够能检测到乙二醛和甲醛的垂直柱浓度,并且能够监测全球范 围内 VOCs 浓度空间分布的实时变化 [56] 。但由于各类遥感技术的原理不同,空气中的颗粒 物和水蒸气等能对遥感信号造成干扰,因此遥感技术的准确性受到限制 [57] ;此外,使用遥感 技术测量的 VOCs 种类受到限制,目前遥感技术主要用于对流层大气中甲醛、乙二醛和一些 芳香烃的测量 [58,59] 。 卫星遥感能长期监测大范围空间内的 VOCs 变化特征 [60] ,常与模型计算结果进行对比 分析,以提高模拟结果的准确性 [61] 。比如,借助卫星平台的高空间分辨率遥感数据,研究人 员能够有效分析区域燃烧源相关 VOCs 的排放清单并加以验证 [62] ;DOAS 通常用于测量区 域甲醛和乙二醛的垂直柱浓度, 研究关于它们的大气化学过程 [63] [65] 和人为源(如工厂和机动车排放等) [66] 。源排放类型分为移动源 和固定源,移动源(如机动车)影响地面 VOCs 浓度 [67] ;固定源除了影响地面 VOCs 浓度 [68] 外,也影响 VOCs 垂直分布 [69][70][71] 。如 Wada 等人发现富士山上的 VOCs 垂直分布结构受到周 边森林排放 VOCs 影响 [69] ;Zhang 等人发现上海机动车排放高浓度的苯,导致地面 200 m 内 出现多个峰值 [71] 。当区域地面污染源排放结构存在显著差异时,关键 VOCs 物种和其他污 染物(如 NO X 和一氧化碳等)的垂直分布结构也出现显著的空间分布差异…”
Section: 无人机平台 无人机平台以无人驾驶飞行器(包括固定翼和多旋翼等)为依托,通常使用离线分析方unclassified