2024
DOI: 10.20944/preprints202403.0675.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Unexpected Uncertainty Principle for Disc Banach Spaces

K. MAHESH KRISHNA

Abstract: Let $(\{f_n\}_{n=1}^\infty, \{\tau_n\}_{n=1}^\infty)$ and $(\{g_n\}_{n=1}^\infty, \{\omega_n\}_{n=1}^\infty)$ be unbounded continuous p-Schauder frames ($0<p<1$) for a disc Banach space $\mathcal{X}$. Then for every $x \in ( \mathcal{D}(\theta_f) \cap\mathcal{D}(\theta_g))\setminus\{0\}$, we show that \begin{align}\label{UB} \|\theta_f x\|_0\|\theta_g x\|_0 \geq \frac{1}{\left(\displaystyle\sup_{n,m \in \mathbb{N} }|f_n(\omega_m)|\right)^p\left(\displaystyle\sup_{n, m \in \mathbb{N}}|g_m(\tau_n)|… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?