1976
DOI: 10.1002/ange.19760880302
|View full text |Cite
|
Sign up to set email alerts
|

Ungewöhnlich hohe Rotationsbarrieren am tetraedrischen Kohlenstoffatom

Abstract: Durch Rotation um CC-Einfachbindungen in geeignet substituierten Verbindungen kommen Rotationsisomere (auch Rotamere genannt) zustande, die sich getrennt isolieren lassen, wenn die Rotationsbarriere hoch genug ist. In diesem Aufsatz werden Triptycen-und Fluoren-Derivate besprochen, deren Rotationsbarrieren um 30 kcal/mol liegen.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

1977
1977
2012
2012

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 55 publications
(2 citation statements)
references
References 29 publications
0
1
0
1
Order By: Relevance
“…The lowest energy rotational processes in such systems generally involve correlated motion of the planar “blades” (known as “cogwheeling”), and their investigation played an important early role in illustrating how motion can be controlled by molecular structure 53. Inspired by the work of Ōki on the high threefold torsional barrier in bridgehead‐substituted triptycenes,54 the research groups of Mislow and Iwamura independently replaced the twofold aryl “rotators”1k of molecular propellers with 9‐triptycyl units, thereby creating so‐called “molecular gears” 53c. 55–57 In these systems, the blades of each triptycyl group are tightly intermeshed, so that correlated disrotatory motion is strongly preferred.…”
Section: Controlling Motion In Covalently Bonded Molecular Systemsmentioning
confidence: 99%
“…The lowest energy rotational processes in such systems generally involve correlated motion of the planar “blades” (known as “cogwheeling”), and their investigation played an important early role in illustrating how motion can be controlled by molecular structure 53. Inspired by the work of Ōki on the high threefold torsional barrier in bridgehead‐substituted triptycenes,54 the research groups of Mislow and Iwamura independently replaced the twofold aryl “rotators”1k of molecular propellers with 9‐triptycyl units, thereby creating so‐called “molecular gears” 53c. 55–57 In these systems, the blades of each triptycyl group are tightly intermeshed, so that correlated disrotatory motion is strongly preferred.…”
Section: Controlling Motion In Covalently Bonded Molecular Systemsmentioning
confidence: 99%
“…Die energieärmsten Rotationen in diesen Systemen sind meist korrelierte Bewegungen der ebenen “Rotorblätter”; ihre Untersuchung lieferte früh wichtige Anhaltspunkte zur Steuerung von Bewegungen durch Molekülstrukturen 53. Aufbauend auf den Arbeiten von Ōki zur hohen Barriere für die Verdrehung um die dreizählige Achse in Brückenkopf‐substituierten Triptycenen54 tauschten die Gruppen von Mislow und Iwamura unabhängig voneinander die zweizähligen Aryl‐“Rotatoren”1k molekularer Propeller gegen 9‐Triptycylreste aus und erhielten so “molekulare Getriebe” 53c. 55–57 Die Rotorblätter sind darin so eng miteinander verzahnt, dass die korrelierte disrotatorische Bewegung stark bevorzugt ist.…”
Section: Gesteuerte Bewegungen In Kovalent Verknüpften Molekülenunclassified