Entropy is being used in physics, mathematics, informatics and in related areas to describe equilibration, dissipation, maximal probability states and optimal compression of information. The Gini index, on the other hand, is an established measure for social and economical inequalities in a society. In this paper, we explore the mathematical similarities and connections in these two quantities and introduce a new measure that is capable of connecting these two at an interesting analogy level. This supports the idea that a generalization of the Gibbs–Boltzmann–Shannon entropy, based on a transformation of the Lorenz curve, can properly serve in quantifying different aspects of complexity in socio- and econo-physics.