We present a covariant multisymplectic formulation for the Einstein-Palatini (or Metric-Affine) model of General Relativity (without energy-matter sources). As it is described by a first-order affine Lagrangian (in the derivatives of the fields), it is singular and, hence, this is a gauge field theory with constraints. These constraints are obtained after applying a constraint algorithm to the field equations, both in the Lagrangian and the Hamiltonian formalisms. In order to do this, the covariant field equations must be written in a suitable geometrical way, using integrable distributions which are represented by multivector fields of a certain type. We obtain and explain the geometrical and physical meaning of the Lagrangian constraints and we construct the multimomentum (covariant) Hamiltonian formalism. The gauge symmetries of the model are discussed in both formalisms and, from them, the equivalence with the Einstein-Hilbert model is established.