2014
DOI: 10.1016/j.ijhydene.2014.05.032
|View full text |Cite
|
Sign up to set email alerts
|

Unified mechanism for hydrogen trapping at metal vacancies

Abstract: Interaction between hydrogen (H) and metals is central to many materials problems of scientific and technological importance. Chief among them is the development of H storage and H-resistant materials. H segregation or trapping at lattice defects, including vacancies, dislocations, grain boundaries, etc, plays a crucial role in determining the properties of these materials. Here, through first-principles simulations, we propose a unified mechanism involving charge transfer induced strain destabilization to und… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
9
0
2

Year Published

2017
2017
2025
2025

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 37 publications
(11 citation statements)
references
References 39 publications
0
9
0
2
Order By: Relevance
“…Multiscale simulations provide a way to circumvent such limitation to reveal those missing details [25][26][27] . At the fundamental level, ab initio calculations based on density functional theory (DFT) have been widely used to study the atomistic behaviors of H in vacancies [28][29][30][31][32][33][34][35][36][37][38][39][40][41][42] , showing that individual H atoms preferentially reside around tetrahedral interstitial sites or octahedral interstitial sites 28-34, 36, 37 on vacancy surfaces as adatoms, and further accumulation of H will quickly saturate the vacancy due to repulsion between H adatoms [28][29][30][31][32][33][34][35][36][37][38] . However, most of previous DFT studies focused only on H in monovacancies 28-35, 39, 40 , rendering a knowledge gap for understanding H in general nanovoids.…”
mentioning
confidence: 99%
“…Multiscale simulations provide a way to circumvent such limitation to reveal those missing details [25][26][27] . At the fundamental level, ab initio calculations based on density functional theory (DFT) have been widely used to study the atomistic behaviors of H in vacancies [28][29][30][31][32][33][34][35][36][37][38][39][40][41][42] , showing that individual H atoms preferentially reside around tetrahedral interstitial sites or octahedral interstitial sites 28-34, 36, 37 on vacancy surfaces as adatoms, and further accumulation of H will quickly saturate the vacancy due to repulsion between H adatoms [28][29][30][31][32][33][34][35][36][37][38] . However, most of previous DFT studies focused only on H in monovacancies 28-35, 39, 40 , rendering a knowledge gap for understanding H in general nanovoids.…”
mentioning
confidence: 99%
“…Obviously, dilute concentrations require large supercells for modeling. The available theoretical studies of the interaction of hydrogen with metal surfaces usually take into account hydrogen in tetrahedral ( 43m) or octahedral (m 3m) site or both [37][38][39][40][41]51,52 . These studies implement either slabs (i.e.…”
Section: Discussionmentioning
confidence: 99%
“…Исследования твердого раствора ниобий−водород методами электронно-позитронной ан-нигиляции, дифракции рентгеновского излучения и про-свечивающей электронной микроскопии [3,4] показали, что растворение водорода способствует образованию ва-кансий с последующим формированием сложных комп-лексов водород-вакансия, структура которых зависит как от концентрации водорода в металле, так и от спосо-ба его введения. Теоретические исследования металлов с кубической структурой [5][6][7], а также ГПУ металлов Ti [8] и Zr [9] выявили, что наличие водорода и вакансий в решетке металлов приводит к формированию различ-ных комплексов водород−вакансия. Очевидно, что на-копление этих комплексов может явиться дополнитель-ным фактором водородного охрупчивания материалов.…”
Section: Introductionunclassified
“…Деградация механических свойств конструкционных материалов, обусловленная водородным охрупчивани-ем [1], стимулирует интенсивные исследования влияния водорода на атомную и электронную структуру метал-лов и сплавов [2][3][4][5][6][7][8][9]. Исследования твердого раствора ниобий−водород методами электронно-позитронной ан-нигиляции, дифракции рентгеновского излучения и про-свечивающей электронной микроскопии [3,4] показали, что растворение водорода способствует образованию ва-кансий с последующим формированием сложных комп-лексов водород-вакансия, структура которых зависит как от концентрации водорода в металле, так и от спосо-ба его введения.…”
Section: Introductionunclassified