To investigate the influence of moisture content, density, and loading frequency on the dynamic strength and liquefaction characteristics of sandy soil, a series of vibration triaxial tests were designed and conducted. The tests were divided into incremental loading tests and cyclic loading failure tests. The results of the incremental loading tests indicated that the shear modulus decreases with increasing moisture content and density, while it increases with increasing loading frequency. The damping ratio of unsaturated samples showed no significant correlation with moisture content, whereas samples with a density above 50% exhibited an increasing trend in damping ratio with increasing density. The damping characteristics of the sandy soil were found to be related to the loading frequency, exhibiting the characteristics of viscous damping. The results of the cyclic loading tests revealed that the dynamic failure mode of the sand soil is the ultimate equilibrium failure mode. Increasing moisture content and decreasing density make the samples more susceptible to failure. During the process of cyclic loading leading to dynamic failure, the shear modulus of unsaturated samples remains constant, while the shear modulus of saturated samples gradually decreases. The damping ratio of saturated soil is significantly higher than that of unsaturated soil. During the process of cyclic loading leading to dynamic failure, the damping ratio of saturated soil shows no apparent correlation with loading frequency, but it decreases with increasing density.