A variety V is said to be coherent if any finitely generated subalgebra of a finitely presented member of V is finitely presented. It is shown here that V is coherent if and only if it satisfies a restricted form of uniform deductive interpolation: that is, any compact congruence on a finitely generated free algebra of V restricted to a free algebra over a subset of the generators is again compact. A general criterion is obtained for establishing failures of coherence, and hence also of uniform deductive interpolation. This criterion is then used in conjunction with properties of canonical extensions to prove that coherence and uniform deductive interpolation fail for certain varieties of Boolean algebras with operators (in particular, algebras of modal logic K and its standard non-transitive extensions), double-Heyting algebras, residuated lattices, and lattices.