Surface-enhanced Raman spectroscopy (SERS) is an analytical technique, which allows to identify traces of chemical or biological substances in many field, like pharmaceutical and food industries, homeland security, nanosensors, or environmental protection. The analytes are identified based on their vibrational spectra, unique for a given compound. The advantage of SERS is effective qualitative analysis of trace amounts of analyte, but the disadvantages are stability of substrate and repeatability of measurements. The challenge is to improve SERS substrates to minimize these drawbacks. Nowadays high-precision electron beam lithography or focused ion beam is used in SERS substrate fabrication, which is impractical for large-scale production. In recent years, researchers' attention has focused on porous anodic oxides, with inexpensive and scalable production method, as potential materials for SERS substrates. This chapter will discuss the progress of anodic oxides used as a SERS substrate, and the brief description of conventional SERS substrate fabrication methods will be presented.