Series–parallel module technology can meet a DC converter’s requirements of high-power, large-capacity, and high step-up ratio in photovoltaic a DC boost collection system. However, the cascaded structure has the problem of voltage and current sharing between modules, and due to the duty cycle limitation of converters, the combined converters in the PV-converter unit have an unbalanced voltage, which may also exceed the voltage range under partial shading conditions (PSCs). First, aiming at the problems of voltage sharing, current sharing, and low modularity in the combined converter, this paper proposes a distributed control strategy. Then, by adopting a coordinated control strategy based on the sub-module cutting in and out, the problem that the combined converter cannot normally boost under PSCs was solved. The paper not only takes the advantages of the cascade structure of the combined converter to increase the power and voltage, but also improves its modularity to solve the problem of abnormal operation under uneven irradiation. This dramatically improves the adaptability of combined converters in a photovoltaic DC collection system. Finally, a small power experiment was carried out, where the experimental results verified the effectiveness of the control strategy.