The question of establishing measure theory for statistical convergence has been moving closer to center stage, since a kind of reasonable theory is not only fundamental for unifying various kinds of statistical convergence, but also a bridge linking the studies of statistical convergence across measure theory, integration theory, probability and statistics. For this reason, this paper, in terms of subdifferential, first shows a representation theorem for all finitely additive probability measures defined on the σ-algebra A of all subsets of N , and proves that every such measure can be uniquely decomposed into a convex combination of a countably additive probability measure and a statistical measure (i.e. a finitely additive probability measure μ with μ(k) = 0 for all singletons {k}). This paper also shows that classical statistical measures have many nice properties, such as: The set S of all such measures endowed with the topology of point-wise convergence on A forms a compact convex Hausdorff space; every classical statistical measure is of continuity type (hence, atomless), and every specific class of statistical measures fits a complementation minimax rule for every subset in N . Finally, this paper shows that every kind of statistical convergence can be unified in convergence of statistical measures.