OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 15358The contribution was presented at CP 2015 :http://booleconferences.ucc.ie/cp2015 Abstract. The study of tractable classes is an important issue in Artificial Intelligence, especially in Constraint Satisfaction Problems. In this context, the Broken Triangle Property (BTP) is a state-of-the-art microstructure-based tractable class which generalizes well-known and previously-defined tractable classes, notably the set of instances whose constraint graph is a tree. In this paper, we propose to extend and to generalize this class using a more general approach based on a parameter k which is a given constant. To this end, we introduce the k-BTP property (and the class of instances satisfying this property) such that we have 2-BTP = BTP, and for k > 2, k-BTP is a relaxation of BTP in the sense that k-BTP (k + 1)-BTP. Moreover, we show that if k-TW is the class of instances having tree-width bounded by a constant k, then k-TW (k + 1)-BTP. Concerning tractability, we show that instances satisfying k-BTP and which are strong k-consistent are tractable, that is, can be recognized and solved in polynomial time. We also study the relationship between k-BTP and the approach of Naanaa who proposed a set-theoretical tool, known as the directional rank, to extend tractable classes in a parameterized way. Finally we propose an experimental study of 3-BTP which shows the practical interest of this class, particularly w.r.t. the practical solving of instances satisfying 3-BTP and for other instances, w.r.t. to backdoors based on this tractable class.