2006
DOI: 10.1007/11874850_54
|View full text |Cite
|
Sign up to set email alerts
|

Unifying Nondeterministic and Probabilistic Planning Through Imprecise Markov Decision Processes

Abstract: Abstract. This paper proposes an unifying formulation for nondeterministic and probabilistic planning. These two strands of AI planning have followed different strategies: while nondeterministic planning usually looks for minimax (or worst-case) policies, probabilistic planning attempts to maximize expected reward. In this paper we show that both problems are special cases of a more general approach, and we demonstrate that the resulting structures are Markov Decision Processes with Imprecise Probabilities (MD… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2007
2007
2009
2009

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 16 publications
(20 reference statements)
0
0
0
1
Order By: Relevance
“…Há também variantes de MDPs e POMDPs, como os MDPs descentralizados [68][69][70], limitados por linguagem [71], MDPs com parâmetros imprecisos [72][73][74] e MDPs contínuos [75]. Littman e Szepesvári [76,77] descrevem também uma formulação generalizada para processos de decisão de Markov, jogos de Markov e diversas variantes de MDPs.…”
Section: Mais Sobre Mdps E Pomdpsunclassified
“…Há também variantes de MDPs e POMDPs, como os MDPs descentralizados [68][69][70], limitados por linguagem [71], MDPs com parâmetros imprecisos [72][73][74] e MDPs contínuos [75]. Littman e Szepesvári [76,77] descrevem também uma formulação generalizada para processos de decisão de Markov, jogos de Markov e diversas variantes de MDPs.…”
Section: Mais Sobre Mdps E Pomdpsunclassified