Numerous phylogenetic studies reported the existence of a pervasive scaling relationship between the ages of extant eukaryotic clades and their estimated diversification rates. The causes of this age-rate-scaling (ARS), whether biological and/or artifactual, remain unresolved. Here we fit diversification models to thousands of eukaryotic time-calibrated phylogenies to explore multiple potential causes of the ARS including parameter non-identifiability, model inadequacy, biases in taxonomic practice, and an important and ubiquitous form of sampling bias-preferentially analyzing larger extant clades. We distinguish between two mechanism by which such sampling biases can cause an ARS: First, by favoring clades that happen to be unusually large merely by chance (i.e., due to the stochastic nature of the cladogenic process), thus leading to rate overestimation, and second, by favoring clades that have truly higher diversification rates. We find that, of the proposed explanations, only sampling biases are likely to contribute to the observed ARS. We develop methods for fully correcting for sampling bias mechanism 1, and find that despite these corrections a substantial ARS remains. We then confirm using simulations that preferring trees with truly higher rates (mechanism 2) likely explains this residual ARS. Since we do not have a completely unbiased sample of clades, including extinct ones, for phylogenetic analyses, it is difficult to demonstrate unambiguously that sampling biases are the sole cause of the ARS. Sampling biases are, however, a parsimonious and plausible explanation for this widely observed macroevolutionary pattern, and this has implications for how we interpret the distribution of diversification rate estimates in extant clades.