2022
DOI: 10.48550/arxiv.2208.02632
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Unifying physical systems' inductive biases in neural ODE using dynamics constraints

Abstract: Conservation of energy is at the core of many physical phenomena and dynamical systems. There have been a significant number of works in the past few years aimed at predicting the trajectory of motion of dynamical systems using neural networks while adhering to the law of conservation of energy. Most of these works are inspired by classical mechanics such as Hamiltonian and Lagrangian mechanics as well as Neural Ordinary Differential Equations. While these works have been shown to work well in specific domains… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?