Abstract:Unilateral problems related to the wave model subject to degenerate and localized nonlinear damping on a compact Riemannian manifold are considered. Our results are new and concern two main issues: (a) to prove the global well‐posedness of the variational problem; (b) to establish that the corresponding energy functional is not (uniformly) stable to equilibrium in general, namely, the energy does not converge to zero on the trajectory of every solution, even if a full linear damping is taken in place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.