Abstract. In this work we establish the limiting absorption principle for the two-dimensional steady-state elasticity system in an inhomogeneous anisotropic medium. We then use the limiting absorption principle to prove the existence of a radiation solution to the exterior Dirichlet or Neumann boundary value problems for such a system. In order to define the radiation solution, we need to impose certain appropriate radiation conditions at infinity. It should be remarked that even though in this paper we assume that the medium is homogeneous outside of a large domain, it still preserves anisotropy. Thus the classical Kupradze's radiation conditions for the isotropic system are not suitable in our problem and new radiation conditions are required. The uniqueness of the radiation solution plays a key role in establishing the limiting absorption principle. To prove the uniqueness of the radiation solution, we make use of the unique continuation property, which was recently obtained by the authors. The study of this work is motivated by related inverse problems in the anisotropic elasticity system. The existence and uniqueness of the radiation solution are fundamental questions in the investigation of inverse problems.