Abstract:Abstract. We attack the problem of deciding whether a finite collection of finite languages is a code, that is, possesses the unique decipherability property in the monoid of finite languages. We investigate a few subcases where the theory of rational relations can be employed to solve the problem. The case of unary languages is one of them and as a consequence, we show how to decide for two given finite subsets of nonnegative integers, whether they are the n-th root of a common set, for some n ≥ 1. We also sh… Show more
We show by a simple reduction that the unique decipherability problem in the language monoid of regular languages over a non-unary alphabet is undecidable.
We show by a simple reduction that the unique decipherability problem in the language monoid of regular languages over a non-unary alphabet is undecidable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.