word count:ABSTRACT Chronic myelomonocytic leukemia (CMML) is an aggressive hematological malignancy with limited treatment options. Whole exome (WES) and targeted sequencing of several independent cohorts of CMML patients, comparing dysplastic (dCMML) to proliferative (pCMML) CMML, as well as paired chronic phase disease and acute leukemic transformation (LT), associate acquisition of oncogenic RAS pathway mutations, the most common being NRAS G12D , with aggressive disease and with disease progression. Using patient derived progenitor colony assays and a NRAS G12D -Vav-Cre mouse model, we further demonstrate the role of mutant RAS signaling in driving and maintaining pCMML phenotype. RNA-sequencing links RAS pathway mutations with an increased expression of genes encoding the mitotic checkpoint kinases PLK1 and WEE1. Further, we dmeoinstrated that non-mutated lysine methyltransferase KMT2A (MLL1) acts as mediator of NRAS-induced PLK1 and WEE1 expression. Finally, we demonstrate the translational value of our findings by showing that pharmacological PLK1 inhibition decreases monocytosis and hepatosplenomegaly while improving hematopoiesis in RAS mutant patient-derived xenografts. Hence, we define severe CMML as oncogenic RAS pathway-enriched malignancies, with a unique gene expression profile regulated by KMT2A, amenable to therapeutic intervention.
RESULTS
RAS pathway mutations correlate with WHO-defined proliferative CMML (pCMML)Analysis was first focused on chronic phase CMML, especially with regards to the phenotypic and survival differences between WHO-defined dCMML and pCMML subtypes. Univariate P.