The character of the bridged hydrogen atom (Hb) of B2H6 has become a hot issue in recent years. In this work, the complexes B2H6 · · · NH3, B2H2X4 · · · nNH3 (n = 1, 2) and 2HF · · · B2H2X4 · · · 2NH3 (X = Cl, Br, I) were constructed and studied based on the M06-2X calculations to investigate how to enhance the Hb · · · N hydrogen-bonded interaction. When the terminal hydrogen atoms (Ht) of B2H6 were replaced by X (X = Cl, Br, I) atoms, the Hb · · · N hydrogen bond were strengthened. According to the electrostatic potentials in B2H2X4, two HF molecules were added to the interspace of the B-H-B-H four-membered ring of the B2H2X4 · · · 2NH3 complexes, and H · · · X hydrogen bond formed, resulting in further enhancing effect of Hb · · · N hydrogen bond. As a result, the positive cooperative effect of Hb · · · N hydrogen bond and H · · · X hydrogen bond do enhance the interactions of each other. The two measures not only enhance the strength of Hb · · · N hydrogen bond, but also achieve the goal to make the Hb · · · N hydrogen bond perpendicular to B · · · B direction.