“…In [7] it was proved that if E is a uniquely remotal subset of a normed space, admitting a center c, and if F , restricted to the line segment [c, F (c)] is continuous at c, then E is a singleton. Then recently, a generalization has been obtained in [9], where the authors proved the singletoness of uniquely remotal sets if the farthest point mapping F restricted to [c, F (c)] is partially continuous at c. Furthermore, a generalization of Klee's result in [4], "If a compact subset E, with a center c, is uniquely remotal in a normed space X, then E must be a singleton", was also obtained in [9].…”